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It is shown how the St Andrew’s cross-wave in a density-stratified fluid is modified 
by a horizontal shear above the level of the source. Ray theory is used to develop the 
equations for the phase configuration and it is shown that, for the special case when 
the background natural frequency is constant and the shear is linear, the wave crests 
are straight lines passing through the source. The waves corresponding to outgoing 
energy have phase velocities directed towards the horizontal level of the source and 
the waves which have undergone a reflection have phase velocities directed towards 
the vertical. It is shown that the ray theory predictions compare well with experiment 
and with finite-difference calculations. 

1. Introduction 
For a density-stratified fluid which has a constant natural frequency N and no 

mean flow, inviscid theory shows that energy propagating from an oscillatory source 
whose frequency w is less than N propagates in straight lines a t  an angle sin-l ( w / N )  
to the horizontal forming a cross-wave in a vertical plane through the source. The 
wave crests lie along the cross-arms and the phase velocities are directed towards the 
level of the source. All wavenumbers propagate along the same ray lines. Mowbray 
& Rarity (1967) considered the far-field wave system. Appleby & Crighton (1986, 
1987) considered an oscillating cylinder and an oscillating sphere in a stratified fluid. 
They matched an inner solution satisfying inviscid boundary conditions around the 
body with outer solutions which included non-Boussinesq terms. 

Viscosity attenuates the velocities and increases the dispersion, widening the arms 
of the cross. The viscous non-Boussinesq similarity solution of Thomas & Stevenson 
(1972) is still essentially a St Andrew’s cross-wave with straight arms, but any 
variation in the background natural frequency produces curvature in the cross-arms 
(Gordon, Klement & Stevenson 1975). In a fluid of constant natural frequency, a 
source oscillating at  this frequency produces a strong vertical wave (Gordon & 
Stevenson 1972). In thermoclines or halines the energy reflects at  caustics where the 
background natural frequency is equal to the source frequency, and the ray lines and 
the phase configuration have cusps as in figure 1. 

When a shear flow is present, internal waves can reflect at  caustics even when the 
background natural frequency is constant. In a thermocline with no shear the 
position of the caustic depends only on the wave frequency and the natural frequency 
distribution. However, in a shear flow it will also depend on the horizontal 
wavenumber and the shear velocity profile, and waves of different wavenumber will 
reflect a t  different altitudes. An important feature of stratified shear flows is the 
existence of critical levels where the frequency of oscillation relative to the fluid 
vanishes and the wave energy is transferred to the mean flow. A detailed study of 
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Source frequency, w 

FIGURE 1. A wave reflection in a thermocline without a shear flow. 

critical-layer absorptions of internal waves has been given by Booker & Bretherton 
(1967). Experimental investigations of viscous internal waves from moving bodies in 
stratified shear flows were presented by Koop (1981) and Koop & McGee (1986). 
They looked at  the interaction of internal waves with the background shear near 
critical layers and presented a viscous wave action analysis based on the work of 
Grimshaw (1974) to predict wave amplitudes and the occurrence of wave overturning 
near the critical level. 

In shear flows it is important to distinguish between the phase configuration and 
the ray paths relative to the fluid and relative to the source. There are misleading 
diagrams in the literature, e.g. Phillips (1966, p. 237, figure 5 . 1 6 ~ )  and Koop (1981, 
figure Sc), where there is no distinction between the phase configurations and the ray 
paths. The indications are that both should look like those in the unsheared 
thermocline, figure 1. This is not so. 

In the next section the equations for internal waves generated by an oscillatory 
disturbance will be derived in terms of ray tlheory. In general they must be integrated 
numerically to obtain the ray paths and the phase configuration. An analytical 
solution is obtained for the special case when the shear is linear and the background 
natural frequency is constant. The waves for this case will be compared with 
experiment and with finite-difference calculations. 

2. Ray tracing in a shear flow 
Consider two-dimensional internal waves in a background flow in which the 

velocity in the [z, 21 direction is [U(z) ,  01 where x is in a horizontal plane and z is 
measured vertically upwards. We make use of the WKB approximation and use ray 
theory together with the dispersion relation and the standard far-field expressions for 
the group velocity, which apply to a stable density-stratified fluid with constant 
natural frequency and no background shear, and apply these ‘relative to the fluid’ 
along ray lines in a fluid with a natural frequency N(x) and with a background shear. 
The frequency relation (Bretherton 1966) is 

w = w,+kU,  (1) 

where w is the frequency of oscillation in a frame of reference fixed in space and w, 
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is the intrinsic frequency relative to the fluid and is related to the wavenumber vector 
K = [k, m] by 

The group velocity relative to the fluid is 

If 8 ( z )  is the angle between the relative group velocity vector and the horizontal, 
then the wavenumber vector K makes an angle 8(z)  with the vertical. If 8(z )  is 
measured anticlockwise from the positive x-direction then w, and cgr can be written 
as 

w, = qs in  81 
and 

Ray paths are defined by 

cgr = [ugr, wgr] = or k-' cos 8 sin 8 [cot 6,1]. 

so that 

dx dz 
dt dt 
- = ug = U+U,,, - - - Wg = Wgr, 

(4) 
( 5 )  

kU +cote. (7) r =  
dx U+u, 
dz wgr w, cos 8 sin 8 
_ -  - 

As energy propagates along a ray path the frequency w and the horizontal 
wavenumber k remain constant and the relative frequency w, and the vertical 
wavenumber m vary with z according to ( 1 )  and (2). 

When internal waves are generated by a source of frequency w ,  the phase of a wave 
group, # = (kx+mz-wt), changes along the ray path a t  a rate of 

d# a#dx a$dz 
dt at ax dt az dt 
- = -+--+-- = -w+kU+K.c , , .  

From (3) K.cgr = 0, so that d#/dt = - w + kU. (9) 
Let the source be a t  the origin of the [x, 23 coordinate system. At  time t ,  energy of 

frequency w propagates away from the source along a ray path. A t  a later time t the 
energy will have reached a new position [x, z ]  and have the phase 

# = -wtl + [, d# + @R> (10) 

where -wt, is the phase of the source at  time t,. The integral represents the phase 
change that occurs as the energy propagates along the ray path during the time 
(t- t l)  and djR is the phase shift due to reflection at caustics where w, = N .  Actually, 
ray theory breaks down in the region near a caustic but it may be 'healed ' in shear 
flows by a method similar to that used by Lighthill (1978) for the unsheared case. It 
is found that the phase change is in minus a small change due to any second gradient 
of the background shear velocity (Liu 1989). For a linear shear flow, i.e. one in which 
U ( z )  varies as Sz+U, with S and U, constant, the phase shift is & as for the 
unsheared thermocline. 

From the above equations it follows that 
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where i2 = w / N ( z )  and 8 is related to z by the equation 

Equations (11)  and (12) can be used to compute phase configurations of the waves 
and (7) can be integrated to obtain the ray paths. 

The radiation condition implies that dt > 0 or from (5) and (6) 

> 0. 
k > 0 or simply ~ 

cos 6 
k dz 

w, cos 6 sin 6 

The permitted values of 8 which determine the directions in which the energy can 
radiate from the source are those which satisfy both (12) and (13). The conditions 
combine to give 

3. Waves in a uniformly stratified shear flow 
The above analysis was for arbitrary distributions of N(x) and U(z) .  However, the 

equations can be integrated analytically when N is constant and U is a linear function 
of z,  

u= SZ+U,, (15) 

where S and U,  are constants. From (12) and (15) 

N sin 8 cos 8 d8 
SkJsin 01 

dz = - 

which is substituted into (7) to give 

where el is given by N]sin8,1 = w -  kU,. 
Equation (17) integrates to 

cot B(i2 - lsin 81) - cot $,(a - lsin 8,l) 
Sk x = N  

and from (12) and (15) the corresponding vertical coordinate is 

s1- (sin 81 - kU,/N 
Sk z = N  

From (11) and (16) 

where @ = #+wt .  For waves prior to reflection or for waves which will not reflect, 
this integrates to 

N 
8 

@ = -{s1(cot8-cot8,)+1nJtan(&l)cot ($31)J} 
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and for reflected waves 

N 
S 

Q, = -{Q(cot8-cot8,)Tlnltan($3) tan($31)l}+Qi,, 

where the upper sign is taken when sine, > 0. 

4. The waves when U, = 0 
U, = 0 corresponds to no background velocity a t  the level of the source or to a 

source moving with the background fluid at the level of the source. The phase 
configuration for this case can readily be deduced from the above equations. The 
equation 

w 
Jsin8,) = - = 0 = constant (23) N 

determines four directions in which the energy generated by the source can 
propagate. It is seen from (21) and (22) that a t  any particular instant t ,  the lines of 
constant phase correspond to lines of constant 8. However, from (18) and (19), 
x / x  = tan8 which implies that lines of constant phase are straight lines emanating 
from the source at the origin, each line being inclined to the horizontal a t  the angle 8. 

Regardless of k, equation ( 5 )  gives wgr/ugr = tan 8 so, since lines of constant phase 
are given by z / x  = tan8 = constant, the relative group velocity vector is always 
parallel to lines of constant phase as in the case when no shear is present. However, 
whilst energy is behaving relative to the fluid as if it were in a stationary fluid, it is 
a t  the same time being convected downstream by the local background flow. As 
energy moves from one level to another its frequency and vertical wavenumber 
change so that it behaves differently relative to the fluid at  different levels. The 
overall effect is to produce ray and phase patterns which are distinctly different from 
each other. 

The above results are illustrated in figure 2 for the case when N = 1.3 rad/s, w = 
0.785 rad/s and S = 0.04 s-l. It is seen that the ray paths form two types of pattern. 
For energy propagating against the current the ray paths are a series of nested loops 
which have a common point a t  the origin. Relative to the fluid the ray paths are 
cusped at  reflection. The position at  which the energy reflects, from (18), (19) and (20) 
with 8 = and U, = 0, is 

(x, 4 = (0,WQ- 1) lS4 ,  

which shows that waves of all wavenumbers reflect on a vertical line passing through 
the body. 

In  figure 2 each ray path is for a different horizontal wavenumber k, the largest 
loops having the lowest values of k. Corresponding energy, that is energy which left 
the source at a particular instant, is found on a straight line from the source and all 
the energy has the same phase. Thus, all wavenumbers reach their farthest position 
from the source, where they reflect, a t  the same time. Corresponding energy 
propagating with the current behaves in a similar way except that it approaches 
critical levels where w, = 0 instead of reflecting at  caustics. In view of this, wave 
crests and troughs are straight lines. 

The positions at  which w,  = 0 are given by 

(5, z )  = ( _+ a, wlSk) ,  
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FIGURE 2. The cross-wave in a uniformly stratified linear shear layer. N = 1.3 rad/s, w = 
0.785 rad/s. (a) Shear profile, dU/dz = 0.04 s-'. ( b )  Ray paths. (c )  Phase configuration : the chain 
dotted line represents the cross-wave when shear is absent and neighhouring solid and dashed lines 
differ in phase by n. Regions A are filled with ray lines and sectors B with lines of constant phase. 

so that again the lowest values of k travel to  greatest heights. From (20) the angular 
phase velocity is 

(24) 
- d0 = w{!E}-l = S sin2 0 
dt (lsin01/Q)--l+ 

This equation shows that the crests and troughs of unreflected waves move towards 
the horizontal level of the source while those from reflected waves move towards the 
vertical. Thus, referring to figure 2(c), in the region above the source, wave crests 
emerge from the right-hand chain-dotted line, which is inclined to the horizontal a t  
an angle sinv1 ( w / N ) ,  and then move away from it. 

5. Finite-difference calculations 
Finite-difference calculations are used to support the analytical results and to 

illustrate the effects of viscosity and source width on the internal waves. The full 
Navier-Stokes equations are solved by the 'marker and cell' method for a stratified 
fluid (Young & Hirt 1972) with the open boundary conditions of Hirt & Cook (1972). 
Liu & Stevenson (1989) showed that the program agrees well with the viscous 
similarity solution for the St Andrew's cross-wave (Thomas & Stevenson 1972) for a 
stratified fluid with constant N and no shear. 

Figure 3 shows a finite-difference solution of a viscous cross-wave in a uniformly 
stratified shear layer under the conditions of the analytical solution of figure 2. The 
waves are generated by a square body, with sides of 20 mm, in a domain of 96 x 96 
square cells which have sides of 5 mm. The natural frequency, the wave frequency w 
and the shear gradient S are the same as those in figure 2. Initially the body is at rest 
and the shear flow is such that the body is in a region of stationary fluid (see figure 
3). A horizontal wake region develops on either side of the body during the 
computations. The body oscillates horizontally in simple harmonic motion with a 
maximum velocity of 0.785 mm/s. The viscosity ,u is 0.001 N s/m2. The velocity 
vector plot presented in figure 3 (b )  shows the perturbation velocity field and figure 
3(c) depicts the contours of constant horizontal density gradient. I n  this figure the 
solid and dashed lines have density gradient values of k0.76 kg/m4. Both figures 
3 (b) and 3 (c) show the situation seven body oscillation periods after the start of the 
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FIGURE 3. Finite-difference solution of the viscous cross-wave in a uniformly stratified linear shear 
layer. (a )  Shear profile, the body height H is 20mm and the maximum body velocity V, is 
0.785 mm/s. ( b )  Perturbation velocity vector plot. (c) Contours of constant horizontal density 
gradient: solid line is 0.76 kg/m4 and the dashed line is -0.76 kg/m4. Other conditions are the 
same as for figure 2. 

FIGURE 4. A schlieren photograph of a cross-wave. The conditions are close to those in figure 3. 

oscillation. Internal wave energy which leaves the computational domain will not 
return and consequently the reflected waves should be slightly stronger than those 
predicted by the computations. The straight wave crests for energy propagating 
against the flow are shown by the finite-difference solution but there is a slight wave 
crest curvature in the energy moving with the flow. This is possibly due to the finite 
body size, or to the large wavenumber gradients being outside those acceptable for 
the WKB approximation, or simply that the region in the diagram is not the ‘far- 
field ’ wave system evaluated in the analytical approach. 

A notable absence of waves above the upper right arm and below the lower left 
arm of the cross in figure 3, unlike the predictions of figure 2 is primarily due to the 
damping effects of viscosity. Further towards the outer corners of these regions, 
waves are totally absent because energy that should have been there has reflection 
points outside the computational domain and is therefore lost. 

In  order to compare this theory with experiment a shear-flow tank has been used 
which has a working area of cross-section 0.3 m by 0.3 m. It has a pump with rotating 
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0.01 N s/m' 

FIGURE 5. The effects of viscosity and amplitude of oscillation of the body on the wave in a linear 
shear. The shear is present only in the region above the body. The viscosity is 0.001 N s/m2 for (a )  
and (c),  and 0.01 N s/mz for ( b )  and ( d ) .  Other conditions are the same as for figure 3. 

horizontal discs of the type described by Ode11 & Kovasznay (1971). The fluid travels 
12 m in one circuit of the tank and the contraction ahead of the working section has 
an area ratio of 4 : 1. The fluid travels in one direction only and the shear is generated 
by graded gauzes downstream of the pump. A horizontal cylinder with a square 
cross-section is suspended from a trolley and moves a t  the same mean velocity as the 
fluid a t  the level of the cylinder. The cylinder is oscillated to  produce the cross wave. 
Figure 4 shows a schlieren photograph of the wave system generated by the 
oscillating cylinder under similar conditions to  those of figure 3. The horizontal 
cylinder has its axis normal to the flow which is from left to  right in the photograph. 
We are looking along the length of the cylinder and the inclined black line in the 
photograph is the supporting strut. 

The effects on the waves of the viscosity and the amplitude of oscillation of the 
body are illustrated in figures 5 and 6. The former shows the perturbation velocity 
vectors and the latter the contours of constant density perturbation. In  these 
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Viscosity = 0.001 N s/m* 

(a) 

FIGURE 6. Contours of constant density perturbation corresponding to figure 5. The solid and 
dashed contours represent density perturbations of f0.009 kg/m3. 

calculations the background shear flow is present only in the region above the level 
of the body, so that the waves in the lower region of the computational domain are 
the usual viscous cross-waves. In  figures 5 and 6, (a )  and (b) correspond to a 
maximum body velocity of 0.785 mm/s whilst (c) and ( d )  have a maximum velocity 
of 7.85 mm/s. (a)  and (c)  have a viscosity of 0.001 N s/m2, and ( b )  and ( d )  a viscosity 
of 0.01 N s/m2. The velocities in each vector plot are made dimensionless by dividing 
by the maximum body velocity. The contours in figure 6 represent density 
perturbations of 0.009 kg/m3 with the dashed lines corresponding to the negative 
value. As expected it is seen that an increase in viscosity reduces the amplitudes. 
When the amplitude of the body is increased the overall wave pattern remains 
unchanged except for the appearance of the wake on either side of the body. 

Finally we consider the case of a linear shear layer overlying a region of stationary 
fluid with an oscillating body positioned some distance below in the stationary fluid. 
The attention is concentrated on the waves which will be propagating against the 
current after entering the shear layer. These waves will reflect a t  caustics in the shear 
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FIGURE 7. The cross-wave when the source is some distance below the shear flow in a region of 
stationary fluid. (a)  The shear profile, S = 0.1 s-'. (b) The solid lines are ray paths and the dashed 
are lines of constant phase ; the two dashed lines have the same phase. There are no further waves 
2x apart. (c) Perturbation velocity vector plot, N = 1.1 rad/s, w / N  = 0.71. 

and will eventually return to the stationary fluid. Koop (1981, figure 10) presents a 
photograph of such waves. The photograph appears to confirm the point that wave 
reflections in shear flows are like those in a stationary thermocline, i.e. that they look 
like figure 1. Figure 7 ( b )  shows the ray pattern from the present calculations 
corresponding to the shear shown in figure 7(a) and the conditions are similar to 
those in Koop's photograph. The corresponding finite-difference calculation is shown 
in figure 7 ( c ) .  It can be seen that at  the most only two waves are present in the shear 
flow and these do not extend very far into the shear. With only two waves visible the 
overall wave pattern does look like that in a stationary thermocline but really the ray 
lines and phase configuration are fundamentally different. 

In general in wave systems the ray lines are different from the lines of constant 
phase. It is the waves from a simple harmonic oscillation in a thermocline that are 
the exception, with ray lines and the phase configuration coincident. 

In this paper ray theory has been used to develop equations for the phase 
configurations around an oscillatory disturbance in a stratified shear flow. For the 
special case when the shear is linear, the wave crests are straight lines passing 
through the source. The analytical results have been supported by experiment and 
by finite-difference calculations of internal waves under similar conditions. The 
numerical results show regions where the lines of constant phase are slightly curved. 
This is probably due to the finite body size and to the large wavenumber gradients 
being outside those acceptable for the WKB approximation which was used for the 
analytical solution. 

The work was supported by the Admiralty Research Establishment, Ministry of 
Defence. 
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